

Impact assessment of climate change on the blowing-snow events in Hokkaido with a large ensemble meteorological dataset

大規模アンサンブル気候予測データによる北海道の吹雪イベントに 対する気候変動の影響評価

Sugawara, K., M. Inatsu, and Y. Harada, 2024: Climate change assessment on blowing snow in Hokkaido using a large ensemble dataset. *Scientific Online Letters on the Atmosphere (SOLA)*, in press.

Kuniyasu Sugawara^{1, 2*}, Masaru Inatsu², Yusuke Harada¹

- 1. Civil Engineering Research Institute for Cold Region (CERI), PWRI, Japan
- 2. Hokkaido University

Blowing snow

- Snow particles are blown through the air with wind ... Blowing snow
- Blowing snow without snowfall ... Drifting snow
- Cause of traffic accidents on winter road

Photo by CERI

Photo by Hokkaido Regional Development Bureau

Purpose

2

- Climate change has affected the phenomena in the cryosphere.
- Some studies focused on a climatological change effect of blowing snow frequency. (e.g., Greaves et al. 2023; Browne and Chen 2023)

Our purpose

To reveal the possible impact of climate change on the **magnitude** of blowing snow events across a wide probability spectrum

- Use a large number of ensemble meteorological dataset called d4PDF
- Focus on the four sites in Hokkaido taking into account the historical record of blowing snow intensity and diverse synoptic characteristics

Ensemble dataset | d4PDF

<u>Regional experiments</u>

• Historical experiment (HIST run)

Database for Policy Decision-Making for Future Climate Change

(Mizuta et al. 2017; Fujita et al. 2019)

3

Ishii and Mori, 2020: d4PDF: large-ensemble and highresolution climate simulations for global warming risk assessment. *PEPS*, **7**, 58.

Equivalent to ...

- **50** members \longrightarrow 1951–2010 (current climate)
- +2-K experiment (+2K run) 54 members → 2040s (the RCP8.5 scenario)

1 ensemble member contains **60**-years simulated data.

d4PDF enables quantitative evaluation of phenomena occurring at low probability.

Severity of blowing snow

Snow transport rate Q_h (kg m⁻¹ h⁻¹; STR) $Q_h = 5.12PU_{10} + 2.81 \times 10^{-3}U_{10}^{4.4}$ Q_f : Snowfall term Q_d : Drifting term

Omiya et al. (2018); Takechi et al. (2023)

P : snowfall (mm h⁻¹) U_{10} : 10-m wind speed (m s⁻¹)

• $Q_h > 300$ (kg m⁻¹ h⁻¹) corresponds to the hourly mean visibility of less than 50 m.

(Kajiya et al. 2004; Harada et al. 2023)

Hardly recognizing a lattice tower

Photo by Dr. Sakurai (CERI)

Severity of blowing snow

Blowing snow can be identified by the following decision tree (Takeuchi et al. 1986; Takechi et al. 2023)

P : Snowfall (mm h^{-1}) U_{10} : 10-m wind speed (m s⁻¹) T : Air temperature (°C) T_{max} : Maximum temperature after snowfall termination (°C) $t_{\rm s}$: Elapsed time from snowfall termination (h)

 S_D : Snow depth (cm)

H : Heaviside's hyper function

Target sites and Data

<u>Target sites</u> : AMeDAS Haboro(H), Abashiri(A), Urakawa(U), and Iwamizawa(I)

Based on 10-year mean annual STR
* 1 winter = November 1–March 31

Analyzed data

* d4PDF data was extracted by the inverse distance weighting method

Mean annual STR (2009/10 - 2018/19)

Bias correction (month by month)

• Temperature ... Offsetting the mean and factoring the standard deviation (Wilby et al. 2004)

$$\widehat{T} = \overline{T_o} + \frac{\sigma[T_o]}{\sigma[T_{m,h}]} \left(T - \overline{T_{m,h}}\right)$$

T: d4PDF data (historical/+2-K) T_o : Observed data $T_{m,h}$: d4PDF in historical experiment Overbar (⁻): Monthly climatology σ []: Monthly standard deviation

• Wind speed and precipitation of snow ... Quantile delta mapping (QDM; Cannon et al. 2015)

$$\hat{x}_{m,p} = x_{m,p} \cdot \frac{F_o^{-1}[F_{m,p}[x_{m,p}]]}{F_{m,h}^{-1}[F_{m,p}[x_{m,p}]]}$$

HIST run
$$\hat{x}_{m,h} = x_{m,h} \cdot \frac{F_o^{-1}[F_{m,h}[x_{m,h}]]}{F_{m,h}^{-1}[F_{m,h}[x_{m,h}]]} = F_o^{-1} \left[F_{m,h} \left[x_{m,h} \right] \right]$$

F: Cumulative distribution function
(In this study gamma function)
<u>Subscripts</u>
o: Observed data
m, p: Modeled data in a projected period
(+2-K climate)
<i>m</i> , <i>h</i> : Modeled data in a historical period
(current climate)

Estimation of snow cover

- The presence of snow cover was diagnosed based on the degree-days method (Kominami et al. 2005; Inatsu et al. 2016) $\frac{dS_D}{dt} = -\alpha S_D - \beta H(S_D \cdot \overline{T})\overline{T} + S_F$ $\int_{Compaction Melting Snowfall}$ $S_D: Daily snow depth (cm)$ $\overline{T}: Daily mean temperature (°C)$ $S_F: Daily snowfall (cm)$ $\alpha: Compaction rate of snow cover (2% day^{-1})$ $\beta: Daily snow melt above 0 °C (cm °C^{-1} day^{-1})$ $H(\cdot): Heaviside's hyper function$
- β value was estimated for 10 winter seasons based on the observation.

• Snow depth estimation: **daily**

Station	β (cm °C⁻¹ day⁻¹)
Haboro	1.45
Abashiri	1.78
Urakawa	3.87
Iwamizawa	2.50

Interpolated into **hourly** data to estimate hourly STR.

Hourly STR

Severe events became rarer in response to global warming.

However...

HIST

+2K

AMeDAS

the risk of traffic accidents due to blowing snow would remain.

Monthly maximum Q_h (ensemble mean)

Future climate (compared to current climate)

- Almost halved in Urakawa
- In the other sites, the reduction exhibited seasonality

Drifting term (Q_d)

Future climate (+2K run)

- Drifting would be reduced at all sites
- The seasonality in drifting's reduction was overall consistent with the seasonality in total STR.

Snow-covered duration (SCD) and STR

In Urakawa ...

- SCD was 30 days shorter than the other sites. (HIST run)
- SCD would decrease to 20.3 days (+2K run)

Conclusion

- We have estimated the impact of climate change on blowing snow intensity (STR) across a wide probability spectrum in four targeted sites of Haboro, Abashiri, Urakawa, and Iwamizawa in Hokkaido using d4PDF.
- We found severe blowing snow events would become rarer in response to global warming.
- The blowing snow at Urakawa was most declined than any other sites. This reduction would be related to the decrease in the snow-covered duration (SCD).